| CONSIDERATION129 | PHES | Li-lon batterles | CsT | VRFB | A-CAES | LAES | ZNBR | Underground
hydrogen | eTES | Na-ion batteries | Gravity | |--|---|---|---|---|---|---|--|---|---|---|---| | Economies of scale | Large opportunity
to reduce cost per
kilowatt for larger
systems | Small opportunity
to reduce cost per
kilowatt for larger
systems | Large opportunity
to reduce cost per
kilowatt for larger
systems | Moderate
opportunity to
reduce cost per
kilowatt for larger
systems | Large opportunity
to reduce cost per
kilowatt for larger
systems | Moderate
opportunity
to reduce cost
per kilowatt for
larger systems | Small (gel type)
to moderate
(flow type) | Large opportunity
to reduce cost per
kilowatt for larger
systems | Moderate
opportunity to
reduce cost per
kilowatt (depending
on system type) | Small opportunity
to reduce cost per
kilowatt for larger
systems | Moderate to
large (depends on
system type) | | Geographical and site characteristics | Topography
requirements
Water requirements
Large footprint | Flexibly deployed
Utility scale has
larger footprint
Operating
temperature 0–45°C | Solar resources
Large footprint
(including solar
array) | Flexibly deployed Utility scale has larger footprint Operating temperature from -15°C to 50°C | Geological
requirements
Moderate above-
ground footprint | Flexibly deployed
Moderate footprint | Flexibly deployed Utility scale has larger footprint Operating temperature 10–45°C | Geological
requirements
Moderate above-
ground footprint | Flexibly deployed
Moderate footprint | Flexibly deployed Utility scale has larger footprint Operating temperature from -30°C to 60°C | Geographical
and footprint
requirements
depend on system
type | | Construction times | 3–7 years | 8–20 weeks | <2 years | 1–1.5 years | 2.5–3.5 years | Expected to be 2 years | Approx-imately 9 months | 1–5 years | Insufficient data | Insufficient data | 1–3.5 years,
depending on
system type and site | | Use of critical materials ¹³⁰ | Low | High – lithium
cobalt, nickel,
manganese (varies
by battery type) | Moderate –
(depends on alloy
type) | Moderate –
vanadium | Low